El objetivo de este equipo es afinar las predicciones sobre el diagnóstico a partir de las imágenes médicas
Fuente: Innovadores La Razón
Un equipo de investigadores valencianos trabaja en el desarrollo de un sistema que aprovecha las capacidades de clasificación de información que ofrecen los procesos de computación de big data e inteligencia artificial (IA) y, en concreto, el aprendizaje profundo. En el proyecto DeepHealth se pretenden crear modelos predictivos a partir de una gran base de datos con imágenes anonimizadas.
La idea fundamental del proyecto es disponer de algoritmos basados en deep learning que analicen imágenes y proporcionen información estructurada útil para el diagnóstico. Para ello, explican fuentes de la Universidad Politécnica de Valencia, es necesario «generar modelos predictivos que, nutriéndose de una gran cantidad de imágenes, proporcionen como salida la probabilidad de que una nueva imagen refleje o no una determinada enfermedad».
Así, este equipo ha recibido 12,7 millones de euros de la Unión Europea para el desarrollo de un software que permita el análisis y almacenamiento de gran cantidad de datos, principalmente imágenes médicas, como herramienta de apoyo a los facultativos en el proceso de toma de decisiones sobre el diagnóstico.
Un componente esencial del proyecto es la creación de una gran base de datos con imágenes médicas anonimizadas que puedan utilizarse para entrenar y validar los modelos matemáticos predictivos. En este sentido, María de la Iglesia-Vayá, responsable del proyecto en la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, afirma: «Crearemos una base de datos que contendrá miles de imágenes anotadas, es decir, descritas y adecuadamente clasificadas. Las anotaciones incluirán cientos de parámetros como, por ejemplo, el volumen exacto de decenas de regiones del cerebro y otras partes del cuerpo».
El gran valor de este proyecto, añade la investigadora de la FISABIO, es que «persigue, a partir de reunir y analizar conjuntamente muchos de esos parámetros de imagen en miles de casos diferentes, afinar las predicciones sobre el diagnóstico a partir de las imágenes médicas y, de ese modo, reforzar la cantidad de información que se extrae de ellas y su valor clínico».
Jon Ander Gómez Adrián, investigador de la UPV y coordinador del proyecto, señala que el objetivo «es aunar dos áreas de desarrollo informático que hasta ahora han estado separadas: la supercomputación, que ofrece unas extraordinarias capacidades de procesamiento, y el big data, que ofrece una gran capacidad analítica».
Para ello, Gómez apunta que el primer paso es «crear un entorno operativo, basado en dos nuevas bibliotecas informáticas, que permita la comunicación y el entendimiento entre los entornos informáticos de supercomputación y los de big data«.
«Una vez desarrollado el entorno operativo» completa Roberto Paredes Palacios, también de la UPV, «el siguiente paso será aplicarlo a una serie de casos clínicos para entrenar los modelos predictivos en diferentes áreas médicas, 14 en total, incluyendo migraña, demencia, depresión, etc.» Por último, los modelos entrenados serán evaluados para validar las predicciones con el fin de confirmar que estas son correctas.
Equipo científico: El proyecto es una colaboración multidisciplinar entre el grupo de investigación liderado por María de la Iglesia-Vayá en la Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO) e ingenieros informáticos de la Universitat Politècnica de València (UPV) coordinados por Jon Ander Gómez Adrián. Junto a ellos, en una iniciativa coordinada por Everis, participan investigadores de otras 19 instituciones de nueve países europeos. Puesto en marcha durante el pasado mes de enero con una duración prevista de tres años.